

Reliability and Uptime in Proton Therapy Accelerator and Beam Delivery Systems; *The Need for a Fresh Medical Device Design Methodology.*

Presented by: Niek Schreuder Provision Center for Proton Therapy, 6450 Provision Cares Way, Knoxville, TN 37909

ProvisionProton.com

Outline

- Current systems
- Fail Safe thinking some misconceptions
- Lessons from the airline industry
- Case Studies
- Down-time Tracking + Management
- New Thinking

Disclaimers

• There is no compromise for

a)Patient safety b)Personnel safety

- Nothing that I propose here should compromise safety
- There is no excuse for an improperly designed System.
- There is no excuse for an improperly tested / commissioned System

Misconceptions in Current Systems

Incorrect Technical Approaches

- Fail the system if anything goes wrong / out of tolerance.
- Let the control systems make all the decisions.
- Slowing things down improves safety.
- Limiting functional capabilities improves safety.
- Proton Therapy systems are more dangerous than X-Ray Systems.
- The more checks, the more safe the system becomes.
- The safest system is one that does never treats a patient.

The Clinical Medical Physicist's Perspective on Designing a Proton Therapy System

ProvisionProton.com

Misconceptions in Current Systems

- Incorrect Operational Approaches / Paradigms
 - The trained staff's only objective is to harm the patients or damage the equipment.
 - More emphasis on protecting the equipment rather than finishing the treatment.
 - Proton Therapy systems are more dangerous than X-Ray Systems.
 - Untrained people are operating the systems.
 - Completing a treatment at the scheduled time is less important than fixing the system.

"Fail Safe" thinking

- Great idea but the focus should not be on "FAIL"
- Only "FAIL" the system after a treatment has been completed
 - Delivering a partial treatment is worse than delivering a treatment with a small uncertainty /risk

Paradigm Shift

- There are very few things in a radiation therapy system that can harm the patient

• Lets try to list those

- Over dose many ways to protect against this.
- Too high beam current operational parameters within certain windows.
- Beam scanned to the wrong position several redundancies can be implemented.

• Operational risks are much higher

- wrong dose / # fractions delivered perfectly correct.
- Treat wrong site / setup errors.

Learning From the Airline Industry

• Never Fail the plane in "Mid-Air"

- "First land the plane" get the passengers off then take the plane to the hanger fix it
- Preventative + Predictive maintenance

• Redundancies

e.g. Manual / Pilot emergency landing at the nearest airport

- the control systems did not prevent the pilot to land on the Hudson River

- Checklists rather than controls systems that are in full control
- Many more

The Radiation Therapy Reality

- Machines are operated by highly trained people
- Nobody wants to harm anybody
- Its very important (clinically and emotionally) to deliver treatments on time.
- Treatment deliveries must be delivered within certain tolerances
 - Systematics errors are bad
 - Random errors often cancel out
- Treatment plans are designed according to certain tolerances
- Fractionated treatments are more forgiving
- Operational risks are much higher

Challenge

- Design a traffic light
- The only way a traffic light can work is for the driver to obey the lights –
 - Red \rightarrow STOP; Yellow \rightarrow Clear the intersection; Green \rightarrow Go

- Learn to drive the car + 16 years old
- Obtain Drivers license
- Can be done in 3 months

• What is required to treat a patient

- Rad Onc \rightarrow 11 years of training + ABR
- Medical Physicist \rightarrow 7 years of training + ABR
- RTT → 3 years of training + ASRT

Much more that can go wrong Much more dangerous

Systems Don't allow any user autonomy – Safety systems are in control

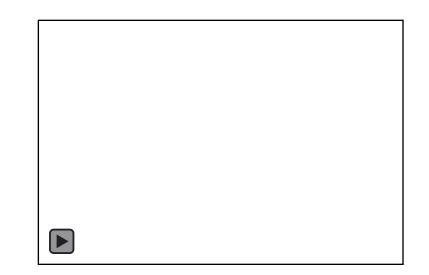
Control systems are in Full control – Why not ?

• Users stop thinking

- The Computer must be correct (NY Accident)
- Computers are always correct !!!
- I cannot do anything anyhow no user rights / permissions
- Just going through the motions

• Allow overrides at the discretion of the trained user

- Overrides expire automatically time window depends on the risk
- This will allow to land the plane and take it to the hanger


Limiting Capabilities improve safety

Allow only one motion at a time

- Current systems allow you to crash the systems
 - a) At slow speed
 - b) One at a time

• Multiple motions should be allowed

- Move as many things as the user can control
- This will automatically attract undivided attention from the operator

- IF the RTT Could move the Patient Positioner while the gantry is rotating this would not have happened
- Commercial linear Accelerators allow simultaneous motions
- Let the trained and responsible staff decide what is safe

Slowing things down improve safety

- The user needs to multitask to get things done in time.
- Does other things instead of keeping an eye on the patient and equipment.
- Let the trained and responsible staff decide what is a safe speed of motion.
- NOTE: there is nothing wrong with sensible warnings and alerts, but disallowing things that are potentially safe and that will improve efficiencies is the problem

More Checks are More Safe ?

- Checklists should not have more than 7 things to check
- Rather focus on the 7 top and most important things than checking 25 less important things.
- Human nature states that "The more checks you have, the less important the initial checks / screening checks become"
 - Someone will catch it at the bottom of the waterfall
- The more unnecessary check there are, the more unnecessary failures can occur.

New Thinking

- FMEA must be done with the emphasis on completing a treatment
- Use a flagger road works ahead
 - Something is not right
 - Take extra care
 - Cross check not all the checks are in place
- Allow conditional overrides for all Interlocks that can be verified with at least one other method / tool
 - Visually / inspection
 - Mechanically
 - Optically
 - Audibly

New Thinking

Modular Design Approaches

- Faster / more efficient trouble shooting.

• Treatment rooms should be independent from each other

- Software Upgrades are easier.

• Efficient Trouble shooting is as important as Reliability

- Things will break BUT How quick can you recover
- Efficient trouble shooting will reduce downtime

Use cases

• X-Ray panels do not retract

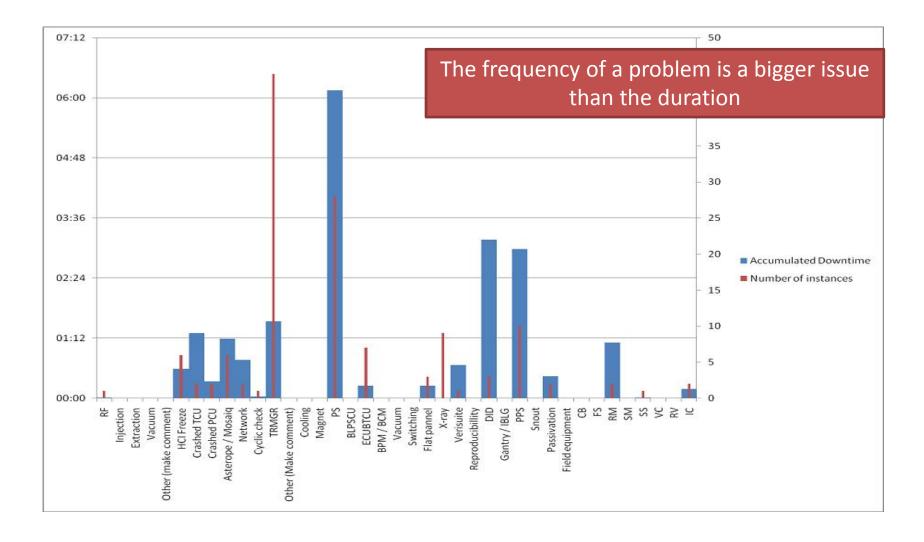
- The protons never go through the patient
- Shield the panel for flash beam

• PPS goes unhealthy during a treatment

- Stop and verify that the patient is still in position
- Appoint a flagger
- Scan beam parameters are marginally out of tolerance
 - Increase / override the tolerances to a next level
 - Tolerances reset automatically after the beam has beam delivered

• Non Critical Inter system communication errors

- Verify that things are still good
- Record data manually
- Appoint a Flagger


Down-Time tracking / Management

- Technical Down-time vs Clinical Downtime
- A short technical down-time can easily lead to a large clinical downtime
 - Patient ready to treat → need to take patient off the table due to a problem
 - Fix the problem
 - Treatment start from scratch again → Large clinical down-time

Pro Cure ANALYTICS How	me Dashboard	Application Manager	Logout Contact Procure We	
Downtime Recorder				
Downtime Recorder Leave Feedback	×			
Current Interrupt: IBA - Han	d Pendant 🛛 Total Elar	osed Time: n/a	Resolution: (unspecifiec
5m [10	m 15m 20	m 25m	30m	35m
4:00 PM 4:05 4:	10 4:15 4	20 4:25	4:30	4:35
technical down time: 15m.13s clinical down time: 9m.24s total down time: 24m.37s				
-3 minutes -1 minute start time 3:59:50 PM +1 minute *3 minutes -3 minutes -1 minute time fixed 4:15:03 PM +1 minute +3 minutes -3 minutes -1 minute time resumed 4:24:27 PM +1 minute *3 minutes re-open report				
IBA	Patient/Procur	e	Interrupt Repo	ort
Patient Control Unit (PCU) TCU Dipole Hand Pendant SMPS Switch Asterope Door Issue RT Trip Redundant Beam Shutoff (RBSO)	MosaiQ (OIS) Refilm - Waiting on Approval Verisuite PPS QA/Physics Patient Moving/Discomfo Patient Setup Error	area affecte 3:59:50 PM 4:15:03 PM 4:24:27 PM notes	nd Pendant d () all () TR1 () TR2 interrupt start interrupt fixed clinical operations resumed dby Niek	
other		submit this	s report di	scard this report

Downtime Duration vs Frequency

Desired Uptime

- Ideal Definition \rightarrow % of patients treated as scheduled.
- Typical Definition → System is available as scheduled per the contractual agreements.

- More than 98 % uptime is desired
- Less than 96 % uptime things become extremely painful
 - Staff morale Ψ
 - Patient satisfaction Ψ
 - Clinical care is compromised

Conclusions

- Proton Therapy Systems are not more dangerous than X-Ray Therapy Systems.
- Proton Therapy Systems must be designed according to the same operational principles and safety guidelines as X-Ray Therapy Systems.
- Slowing things down and limiting functionalities does not improve safety.
- Completing a patient treatment must take priority over shutting the system down for repairs.
- Treating patients as scheduled is clinically and emotionally very important.

